ADHD nei Servizi di Neuropsichiatria in Italia

Milano, 14 dicembre 2016 10.00-18.00

> 15 dicembre 2016 9.00-18.00 - AULA A

IRCCS Istituto di Ricerche Farmacologiche Mario Negri Via G. La Masa 19 - 20156 Milano

La Comorbilità nell'ADHD
Disturbi a bassa Frequenza
Epilessia
Caterina Cerminara

Neuropsichiatra Infantile

PREVALENCE OF ADHD IN CHILDREN WITH EPILEPSY

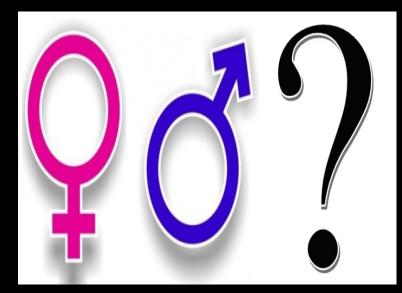
- The prevalence of ADHD in children with Epilepsy has been observed to in the range of 12 to 39%
- ADHD Inattentive Subtype 24%
 - ADHD Combined Subtype 11%
- ADHD Hyperactive/Impulsive Subtype 2%

PREVALENCE OF ADHD IN CHILDREN WITH EPILEPSY

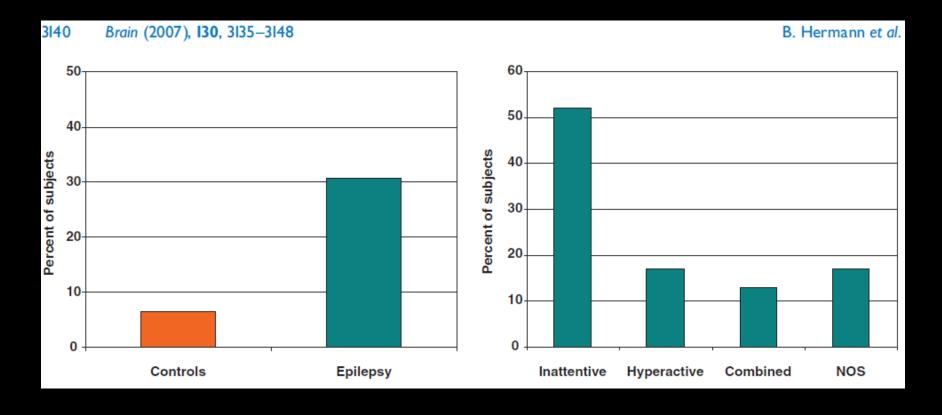
12% of 25 children with "complicated" Epilepsy +ADHD
 2.1% of children with diabetes + ADHD
 None of 42 children with "uncomplicated" Epilepsy had -ADHD
 Davies, 2003

13,7% of the children with Epilepsy + ADHD
Hesdorffer, 2004

- 28,1% of children with Epilepsy + "Hyperactivity"
 5.7 times higher control children
 2.3 times higher control children with cardiac problem
 Mcdermott, 1995
- > 17% of 134 children (medical records) with Epilepsy + ADHD


 Hedderick and Buchhalter, 2003

PREVALENCE OF ADHD IN CHILDREN WITH EPILEPSY


Without Epilepsy, ADHD is seen in school-aged children with a Male

to Female Ratio of 2-3:1

ADHD + EPILEPSY the Ratio is 1:1

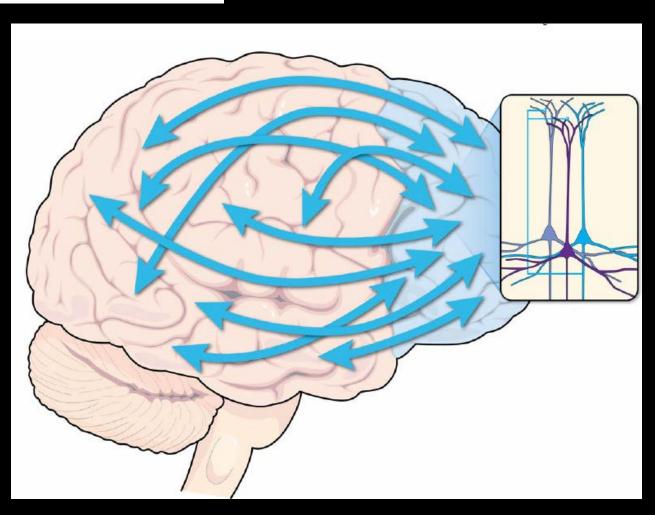
ADHD IN CHILDREN WITH EPILEPSY

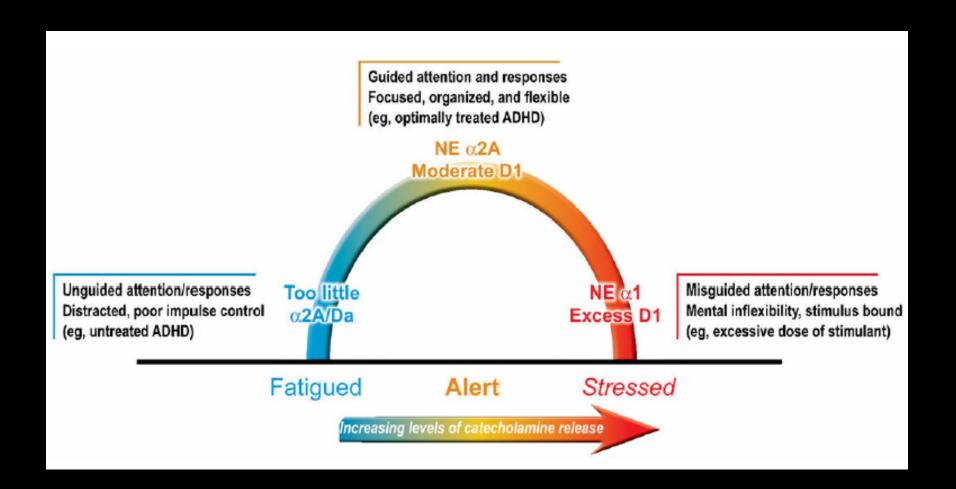
TIMING OF ADHD AND ITS COMORBIDITIES: "Care was taken to date the onset of ADHD in relation to the first-recognized seizure and the diagnosis of epilepsy. Both ADHD and its complications antedatted the diagnosis of epilepsy in tha majority of cases (82% for ADHD, 65% for academics; n 75)"

ADHD as a Risk Factor for Incident Unprovoked Seizures and Epilepsy in Children

Dale C. Hesdorffe Olafur Kjartansso Table 2. Attention-Deficit/Hyperactivity Disorder as a Risk Factor for Incident Unprovoked Seizure in Icelandic Children

	No. of	No. of	Odds Ratio*
Diagnosis	Cases	Controls	(95% Confidence Interval)
Whole group (109 cases and 218 controls)			
ADHD-I	7	4	3.7 (1.1-12.8)
ADHD-H	6	7	1.8 (0.6-5.7)
ADHD-C	2	2	2.5 (0.3-13.3)
ADHD	15	13	2.5 (1.1-5.5)
Referent	94	205	1.0 (Referent)
Partial onset (56 cases and 112 controls)†			
ADHD-I	3	1	5.2 (0.5-50.4)
ADHD-H	4	5	1.7 (0.4-7.0)
ADHD-C	0	2	NA NA
ADHD	7	8	1.9 (0.6-5.9)
Referent	49	104	1.0 (Referent)
Generalized onset (52 cases and 104 controls)†			(,
ADHD-I	4	3	2.7 (0.6-11.9)
ADHD-H	1	2	1.0 (0.1-11.0)
ADHD-C	2	ō	NA NA
ADHD	7	5	2.8 (0.9-8.8)
Referent	45	99	1.0 (Referent)
Idiopathic/cryptogenic (97 cases and 194 controls)			1.5 (1.5.5.5.1.)
ADHD-I	4	4	2.1 (0.5-8.6)
ADHD-H	6	6	2.2 (0.7-7.2)
ADHD-C	2	2	2.2 (0.3-16.2)
ADHD	12	12	2.2 (0.9-5.0)
Referent	85	182	1.0 (Referent)
Remote symptomatic (12 cases and 24 controls)		102	1.0 (Holorott)
ADHD-I	3	0	NA
ADHD-H	ő	ĭ	NA
ADHD-C	ő	ò	NA
ADHD	3	ĭ	6.0 (0.6-57.7)
Referent	9	23	NA NA
Epilepsy (64 cases and 128 controls)	9	23	INA.
ADHD-I	5	2	5.0 (1.0-25.8)
ADHD-H	4	4	2.3 (0.5-10.4)
ADHD-C	1	1	2.0 (0.1-32.0)
ADHD	10	7	3.1 (1.1-8.6)
Referent	54	121	1.0 (Referent)
Single unprovoked seizure (45 cases and 90 controls)	54	121	1.0 (neierent)
ADHD-I	2	2	2.3 (0.3-17.7)
ADHD-H	2	3	1.3 (0.2-8.0)
ADHD-R ADHD-C	1	1	2.6 (0.1-45.9)
ADHD ADHD	5	6	1.7 (0.5-6.2)
Referent	40	86	1.7 (0.5-6.2) 1.0 (Referent)
neierent	40	00	I.U (helelelit)

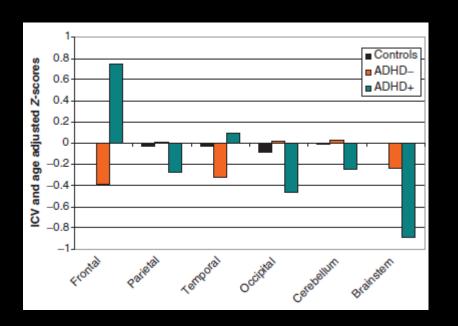

- 2.5-fold increased risk for unproked seizures in children with ADHD
- 3.7 fold increased risk for unproked seizures in children with ADHD-I

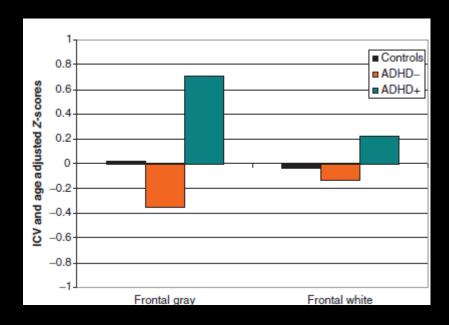

Catecholamine Influences on Prefrontal Cortical Function: Relevance to Treatment of Attention Deficit Hyperactivity Disorder and Related Disorders

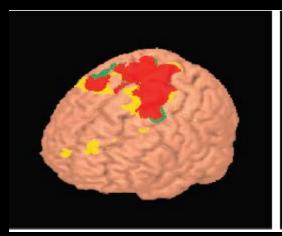
Amy F. T. Arnsten, PhD¹ and Steven R. Pliszka, MD²

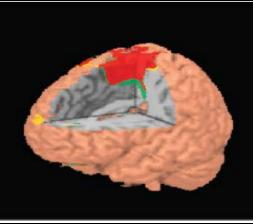
¹Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA

²Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX, USA






ADHD-Epilepsy Comorbidity: the Neurobiology


- Quantitative MRI demonstrated that ADHD in epilepsy is associated with significantly increased grey matter in the frontal lobe and significant smaller brainstem volume
- Animal models of ADHD suggest that synaptic abnormality in excitatory glutamatergic transmission may contribute to vulnerability for epilepsy and ADHD, and could help to identify common pathophysiological events between these two conditions


Brain Morfology in Children with Epilepsy and ADHD

ADHD and Epilepsy types

- Certain epilepsy syndromes may predispose to ADHD-like behavior
- Patients who have generalized epilepsies are more frequently reported to have attentional difficulties than patients suffering from partial seizures.
- The presence of ADHD symptoms at the time of epilepsy onset is a major marker of abnormal cognitive development

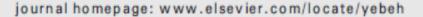
ADHD and Frontal Lobe Epilepsy

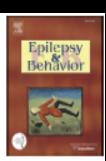
- FLE shares behavioral features with ADHD, presenting in some patients with impulsivity, disinhibition, and excitement/irritability
- There is a critical early stage of brain maturation during which frontal lobes EEG discharges perturb the development of brain system underpinning attention and hyperactive disorders, therefore interfering with the normal development of learning processes

ADHD and "Benign" Epilepsies

- Childhood absence epilepsy
 - Children affected by CAE have difficulty in visual sustained attention, verbal and non-verbal attention, and memory, despite a good response to AEDs and normal intelligence
 - ADHD is the most common psychiatric diagnosis in children affected by CAE,
 with a prevalence of the inattentive subtype

ADHD and "Benign" Epilepsies


Rolandic epilepsy


- Rolandic spikes are clearly more frequent in ADHD children than in the general pediatric population, even if there is still no clear explanation for this association
- Children suffering from benign epilepsy with centrotemporal spikes have been shown to have a greater susceptibility to distracters occurring in their visual field compared to healthy children and children affected by idiopathic generalized epilepsies

Contents lists available at SciVerse ScienceDirect

Epilepsy & Behavior

Brief Communication

Attention impairment in childhood absence epilepsy: An impulsivity problem?

Caterina Cerminara a,*,1, Elisa D'Agati a,1, Livia Casarelli a, Ivo Kaunzinger b, Klaus W. Lange b, Mariabernarda Pitzianti a, Pasquale Parisi c, Oliver Tucha d, Paolo Curatolo a

- •12 boys-12 girsl with CAE and seizure-free
- •Age 8-14
- IQ>80,
- •EEG with bilateral symmetrical and synchronous spike and-wave at 3 Hz
- •18 with VPA, 4 with LEV, 1 with LTG, 1 with VPA+LTG,, 1 with VPA+LEV
- •No ADHD and psychiatric disorders and neurological impairments

^{*} Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome "Tor Vergata", Italy

Department of Experimental Psychology, University of Regensburg, Germany

Caracteristic Page 1 - Page 1 - Page 1 - Page 1 - Page 2 - Page

^d Department of Clinical and Developmental Neuropsychology, University of Groningen, The Netherlands

Test performance of patients with absence epilepsy compared to control children (mean $+$ SD).				
	Healthy children	Children with absence epilepsy	Z	р
	N = 24	N = 24		
Intensity of attention				
Tonic arousal (tonic alertness task)				
Reaction time (ms)	300.77 ± 45.83	335.15 + 101.63	-0.46	.648
Variability of reaction time (ms)	40.03 ± 17.63	69.98 ± 58.93	-2.77	.006*
Number of omission errors	0.04 ± 0.20	0.13 ± 0.45	-1.00	.317
Phasic arousal (phasic alertness task)				
Reaction time (ms)	287.08 ± 47.89	309.17 ± 68.30	-1.10	.271
Variability of reaction time (ms)	50.23 ± 32.26	90.12 ± 72.80	-2.63	.009*
Number of omission errors	0.29 ± 0.55	0.13 ± 0.34	-1.41	.157
Vigilance (vigilance task)				
Reaction time (ms)	809.15 ± 149.65	751.98 ± 137.44^{a}	-0.96	.338
Variability of reaction time (ms)	178.24 ± 64.89	174.64 ± 71.24^a	-0.06	.951
Number of commission errors	4.46 ± 3.72	6.87 ± 7.09*	-1.95	.051
Number of omission errors	5,21 ± 4,11	6.13 ± 3.61 ^a	-0,52	.603
Selectivity of attention				
Divided attention (divided attention task)				
Reaction time (ms)	805,60 ± 86,73	786,81 ± 113,50	-0.29	.775
Variability of reaction time (ms)	280.00 ± 87.73	321,59 ± 95,49	-1,34	.179
Number of commission errors	2.50 ± 2.38	4.21 ± 4.52	-1.12	.264
Number of omission errors	4.04 ± 3.37	7.21 ± 3.73	-3,79	.001*
Impulsivity (Go/No-Go task)				
Reaction time (ms)	634.44 ± 80.63	666,67 ± 110,40	-1,53	.126
Variability of reaction time (ms)	91.45 ± 23.92	132.94 ± 73.71	-2.74	.006*
Number of commission errors	0.63 ± 1.01	2.67 ± 4.05	-3,38	.001*
Number of omission errors	0.04 ± 0.20	1.00 ± 2.45	-2,20	.028
Focused attention (incompatibility task)				
Reaction time (ms)	556.17 ± 127.44	533,56 ± 153,51	-1.06	.290
Variability of reaction time (ms)	$156,62 \pm 80,71$	193,89 ± 146,62	-0.51	.607
Number of commission errors	7.88 ± 7.17	10.08 ± 9.19	-1.06	.291
Selective attention (visual scanning task)				
Reaction time (ms)	4215.67 ± 1578.28	3179.81 ± 1468.43	-2.89	.004*
Variability of reaction time (ms)	2317,58 ± 1160,52	1938,79 ± 958,09	-1,29	.199
Number of commission errors	0.58 ± 1.10	1.08 ± 2.38	-0.78	.437
Number of omission errors	3.96 ± 2.16	6.17 ± 4.04	-2,39	.020

The patients with CAE were marked impaired in some measures of Alertness, Diveded Attention, Impulsivity and Selective Attention

The higher rate of commission errors and false positive answers of this patients indicates problems in controlling behavior in the Go/No-Go task in the impulsivity task.

Epilepsy & Behavior

journal homepage: www.elsevier.com/locate/yebeh

Benign childhood epilepsy with centrotemporal spikes and the multicomponent model of attention: A matched control study

Caterina Cerminara ^{a,*}, Elisa D'Agati ^a, Klaus W. Lange ^b, Ivo Kaunzinger ^b, Oliver Tucha ^c, Pasquale Parisi ^d, Alberto Spalice ^e, Paolo Curatolo ^a

Characteristics of patients with rolandic epilepsy and matched healthy participants.

	Ro/Co ^a	Ro-EO/ Co-EO	Ro-LO/ Co-LO	Ro-HSI/ Co-HSI	Ro-LSI/ Co-LSI
N (each group)	21	9	12	11	9
Sex (F/M)	9/12	3/6	6/6	6/5	3/6
Age (years)	$9.86 \pm 1.59_{b}$	9.22 ± 1.64	10.33 ± 1.43	9.45 ± 1.44	10.33 ± 1.80

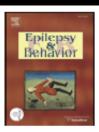
- All partecipants were tested with a computerized test battery that consisted of a:
- selective attention task
- Impulsivity task
- Focused Attention task
- Vigilance task

Results

- Impairment in Selectivity (Impulsivity, Focused Attention, Selective Attention, Aspects of Divided Attention)
- Impaireant in Intensity (Arousal), No impairment in Vigilance
- No correlation with electroclinical variables of age at onset and spike index on sleep EEGs

Pharmacological Treatment in ADHD+ Epilepsy

 Safety: any tendency to increase the likelihood of seizures and interactions with AEDs


- Tolerability: as children with epilepsy appear to have higher rates of side effects or adverse reactions other than seizures
- Efficacy: pharmacological trials

Contents lists available at ScienceDirect

Epilepsy & Behavior

journal homepage: www.elsevier.com/locate/yebeh

Methylphenidate improves the quality of life of children and adolescents with ADHD and difficult-to-treat epilepsies

Ana Lucia Radziuk, Renata Rocha Kieling *, Kleber Santos, Rosana Rotert, Fernanda Bastos, André Luis Palmini

Severe and Refractory Epilepsies Outpatient Clinic, Neurology Service, Hospital São Lucas, Faculty of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS). Porto Alegre. RS. Brazil

ARTICLE INFO

Article history: Received 27 August 2014 Revised 11 February 2015 Accepted 16 February 2015 Available online 1 May 2015

Keywords: Epilepsy ADHD Quality of life Methylphenidate

ABSTRACT

Objective: Comorbidity between difficult-to-treat epilepsies and ADHD is frequent and impacts negatively on quality of life. The commonly held (yet poorly substantiated) view that stimulants may worsen seizure control has prevented studies from evaluating the impact of such treatment in this population. Our aim was to study the effect of methylphenidate on the quality of life of children and adolescents with difficult-to-treat epilepsies and comorbid ADHD.

Methods: The study was an open-label, noncontrolled trial with intention-to-treat analysis following 30 patients for 6 months. Subjects received methylphenidate following 3 months of baseline, during which antiepileptic drugs (AEDs) were adjusted and epilepsy, ADHD, and quality-of-life variables were assessed. Multivariate regression analysis identified the main variables correlated with outcome.

Results: Only one patient withdrew because of seizure worsening. Following methylphenidate introduction, doses were titrated up to 0.40–0.50 mg/kg/day. A marked improvement in quality-of-life scores and a significant reduction in seizure frequency and severity were observed. Female sex, reduction of core ADHD symptoms, and tolerability to adequate doses of methylphenidate were significantly associated with improved quality-of-life scores.

Conclusion: These preliminary data suggest that methylphenidate treatment is safe and effective in patients with ADHD and difficult-to-treat epilepsies, positively impacting on quality-of-life scores.

© 2015 Elsevier Inc. All rights reserved.

ADHD in childhood epilepsy: Clinical determinants of severity and of the response to methylphenidate

^{1,2}Sylvain Rheims, ^{2,3}Vania Herbillon, ⁴Nathalie Villeneuve, ⁵Stéphane Auvin, ⁶Silvia Napuri, ⁷Claude Cances, ⁸Patrick Berquin, ⁹Pierre Castelneau, ¹⁰Sylvie Nguyen The Tich,

¹¹ Frédéric Villega, ¹	
14Behrouz Kassai,	2,3 p

Table 1. Patients' baseline clinical characteristics					
		Patients followed without specific	Patients in whom MPH was		
	All patients	pharmacologic intervention for ADHD	initiated at study entry		
Total, n (%)	167	106 (63)	61 (37)		
Age, mean ± SD	9.5 ± 2.4	9.5 ± 2.3	9.6 ± 2.4		
Gender (boys), n (%)	112 (67)	74 (70)	38 (62)		
Epilepsy					
Syndrome, n (%)					
Nonidiopathic focal epilepsy	50 (30)	36 (34)	14 (23)		
Idiopathic focal epilepsy	46 (28)	28 (26)	18 (30)		
Childhood absence epilepsy	27 (16)	11 (10)	16 (26)		
Other forms of genetically determined	26 (16)	21 (20)	5 (8)		
gene ralize d epilepsies Others	14 (8)	7 (7)	7(11)		
Unavailable	V /	7 (7)	· · · · · · · · · · · · · · · · · · ·		
	4 (2) 5.0 ± 3.3	3 (3) 4.8 ± 3.3	I (2) 5.3 ± 3.2		
Age at epilepsy onset, mean ± SD					
Active epilepsy, n (%)	76 (46)	48 (45)	28 (46)		
Number of ongoing AED, n (%) 0	24 (22)	21 (20)	IE (2E)		
ı	36 (22)	21 (20)	15 (25)		
2	86 (52)	57 (54)	29 (47)		
>3	38 (22)	21 (20)	17 (28) 0		
	7 (4)	7 (6)	0		
AED, n (%)	(0 (41)	46 (42)	22 (20)		
Sodium valproate	69 (41)	46 (43)	23 (38)		
Lamotrigine Ethosuximi de	25 (15)	12 (12)	12 (20)		
	13 (8)	9 (8)	4 (7)		
Topiramate	3 (2)	2 (2)	1 (2)		
Carbamazepine/oxcarbazepine Benzodiazepines	27 (16)	19 (18)	8(13)		
Levetirace tam	19 (11) 19 (11)	14 (13)	5 (8)		
Other		12 (11)	7(12)		
School performance, n (%)	8 (5)	6 (6)	2 (3)		
	57 (35)	35 (33)	22 (37)		
History of repeating grades	37 (33)	35 (33)	22 (37)		
Parental estimation of school performances Very good/good	20 (2.2)	26 (24)	13 (21)		
Intermediate	39 (23)	26 (24)	13 (21)		
Insufficient/very insufficient	65 (39)	44 (42)	21 (34)		
Specific educational program	63 (38)	36 (34)	27 (44)		
Yes	11 (6)	10 (1)	I (2)		
No	156 (94)	96 (99)	60 (98)		
ADHD	, ,	, ,			
Type, n (%)					
ADHD-I	68 (43)	42 (42)	26 (44)		
ADHD-C	92 (57)	59 (58)	33 (56)		
Age at ADHD onset, mean ± SD	5.4 ± 1.9	5.3 ± 1.8	5.6 ± 2.1		
ADHD Rating Scale-IV, mean ± SD					
Totalscore	30.4 ± 9.2	29.3 ± 8.4	32.4 ± 10.2		
Inattentive subscore	17.3 ± 4.4	16.7 ± 4.1	18.1 ± 4.8		
Hyperactivity subscore	13.2 ± 6.6	124 ± 6.2	14.3 ± 7.2		

Table I. Patients' baseline clinical characteristics

ADHD in childhood epilepsy: Clinical determinants of severity and of the response to methylphenidate

^{1,2}Sylvain Rheims, ^{2,3}Vania Herbillon, ⁴Nathalie Villeneuve, ⁵Stéphane Auvin, ⁶Silvia Napuri, ⁷Claude Cances, ⁸Patrick Berquin, ⁹Pierre Castelneau, ¹⁰Sylvie Nguyen The Tich,
 ¹¹Frédéric Villega, ¹²Hervé Isnard, ¹³Rima Nabbout, ¹⁴Ségolène Gaillard, ¹⁵Catherine Mercier, ¹⁴Behrouz Kassai, ^{2,3}Alexis Arzimanoglou, and *the investigators of the Paediatric Epilepsy REsearch NEtwork (PERENE)

KEY POINTS

- Because of its impact on quality of life and cognition, comorbid ADHD represents a key aspect of the management of children with epilepsy
- ADHD symptoms are not associated with the underlying epilepsy syndrome, the severity of epilepsy, and/or the ongoing antiepileptic drugs
- Methylphenidate resulted in a clinically significant decrease of ADHD symptoms in 75% of patients
- Response to methylphenidate was greater in girls but was not influenced by any epilepsy-related variables
- Methylphenidate was not associated with increased risk of seizure relapse
- Because of the limitations related to its observational design, the results of this study will have to be confirmed in a randomized double-blind controlled trial

Table 2. Effects of MPH on seizure control in children with epilepsy and ADHD: prospective studies

		Participants not having increase in seizure rate	Participants not having increase in seizure rate
Study (first author, year)	N	#	%
Feldman, 1989	10	10	100
Gonzalez-Heydrich, 2010	33	33	100
Santos, 2013	22	18	82
Koneski, 2011	24	22	92
Yoo, 2009	25	23	92
Gucuyener, 2003	57	52	91
Gross-Tsur, 1997	30	27	90
Average	201	185	92

Table 3. Effects of MPH on ADHD symptoms in children with epilepsy and ADHD: prospective studies that provided raw data

		Participants improving from MPH use	Participants improving from MPH use
Study (first author, year)	N	#	%
Feldman, 1989	10	7	70
Gross-Tsur, 1997	30	21	70
Santos, 2013	22	16	73
Koneski, 2011	24	17	71
Average	86	61	71

CONCLUSION

Available online at www.sciencedirect.com

Epilepsy & Behavior 12 (2008) 217-233

www.elsevier.com/locate/yebeh

Review

Attention-deficit/hyperactivity disorder in pediatric patients with epilepsy: Review of pharmacological treatment

Alcy R. Torres a, Jane Whitney b, Joseph Gonzalez-Heydrich b,*

Received 31 May 2007; revised 31 July 2007; accepted 1 August 2007 Available online 11 December 2007

In conclusion, although much research still needs to be done, the data on impairment from ADHD and the risks and benefits of its treatment argue that we should no more leave a child's ADHD untrated than leave his or her epilepsy untreataed

a Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA, USA

b Department of Psychiatry, Children's Hospital, Harvard Medical School, Boston, MA, USA